TEORÍA DE FUNCIONES
CONCEPTO DE FUNCIÓN.
Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna.
Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real.
f : D


x
f(x) = y
f(x) = y
El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
El número x perteneciente al dominio de la función recibe el nombre de variable independiente.
Al número, y, asociado por f al valor x, se le llama variable dependiente. La imagen de x se designa por f(x). Luego
y= f(x)
Se denomina recorrido de una función al conjunto de los valores reales que toma la variable y o f(x).
x



Conjunto inicial Conjunto final
Dominio Conjunto imagen o recorrido
El dominio es el conjunto de elementos que tienen imagen.
D = {x ∈
/ ∃ f (x)}
/ ∃ f (x)}
El recorrido es el conjunto de elementos que son imágenes.
R = {f (x) / x ∈ D}.
GRÁFICO DE FUNCIONES.
Tabla de valores y representación
Si f es una función real, a cada par (x, y) = (x, f(x)) determinado por la función f le corresponde en el plano cartesiano un único punto P(x, y) = P(x, f(x)). El valor de x debe pertenecer al dominio de definición de la función.
Como el conjunto de puntos pertenecientes a la función es ilimitado, se disponen en una tabla de valores algunos de los pares correspondientes a puntos de la función. Estos valores, llevados sobre el plano cartesiano, determinan puntos de la gráfica. Uniendo estos puntos con línea continua se obtiene la representación gráfica de la función.
| x | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| f(x) | 2 | 4 | 6 | 8 | 10 |

Grafico de una función
Grafo de una función es el conjunto de pares formados por los valores de la variable y sus imágenes correspondientes.
G(f) = {x, f(x) /x ∈ D(f)}
Sistema de coordenadas cartesianas
Un sistema de coordenadas cartesianas es un par de rectas graduadas, perpendiculares, que se cortan en un punto O(0,0), llamado origen de coordenadas. A la recta horizontal se llama eje de abscisas, y a su perpendicular por O, eje de ordenadas.
Se puede representar una función en el plano haciendo corresponder a cada par del grafo un punto determinado, marcando en el eje de abscisas el valor de su variable y en el de ordenadas, su correspondiente imagen.
COMPOSICIÓN DE FUNCIONES.
Si tenemos dos funciones: f(x) y g(x), de modo que el dominio de la 2ª esté incluido en el recorrido de la 1ª, se puede definir una nueva función que asocie a cada elemento del dominio de f(x) el valor de g[f(x)].
Veamos un ejemplo con las funciones f(x) = 2x y g(x) = 3x + 1.

(g o f) (x) = g [f(x)] = g (2x) = 3 (2x) +1 = 6x + 1
(g o f) (1) = 6 · 1 + 1 = 7
EJEMPLOS
1Sean las funciones:

2

Si f(a) = b, entonces f−1(b) = a.
Veamos un ejemplo a partir de la función f(x) = x + 4

Podemos observar que:
El dominio de f−1 es el recorrido de f.
El recorrido de f−1 es el dominio de f.
Si queremos hallar el recorrido de una función tenemos que hallar el dominio de su función inversa.
Si dos funciones son inversas su composición es la función identidad.
(f o f−1) (x) = (f−1 o f) (x) = x
Las gráficas de f y f-1 son simétricas respecto de la bisectriz del primer y tercer cuadrante.

Hay que distinguir entre la función inversa, f−1(x), y la inversa de una función,
.
.
CRECIMIENTO O DECRECIMIENTO DE UNA FUNCIÓN.
El incremento de una función se llama tasa de variación, y mide el cambio de la función al pasar de un punto a otro.
t.v.= f(x+h) - f(x)

Función estrictamente creciente

f es estrictamente creciente en a si sólo si existe un entorno de a, tal que para toda x que pertenezca la entorno de a se cumple:


La tasa de variación es positiva.
Función estrictamente decreciente

es estrictamente decreciente en a si sólo si existe un entorno de a, tal que para toda x que pertenezca la entorno de a se cumple:


La tasa de variación es negativa.
Función acotada superiormente
Una función f está acotada superiormente si existe un número real k tal que para toda x es f(x) ≤ k.
El número k se llama cota superior.
Ejemplo

k=0.135
Función acotada inferiormente
Una función f está acotada inferiormente si existe un número real k′ tal que para toda x es f(x) ≥ k′.
El número k′ se llama cota inferior.

k′ = 2
MÁXIMOS Y MÍNIMOS ABSOLUTOS.
Máximo absoluto
Una función tiene su máximo absoluto en el x = a si la ordenada es mayor o igual que en cualquier otro punto del dominio de la función.

a = 0
Mínimo absoluto
Una función tiene su mínimo absoluto en el x = b si la ordenada es menor o igual que en cualquier otro punto del dominio de la función.

b = 4






No hay comentarios.:
Publicar un comentario